
 1 / 32

How internet congestion
control actually works in
the bufferbloated age

Dave Taht (dave.taht@gmail.com)
Nagger in Chief – Bufferbloat.net

CTO - TekLibre

 2 / 32

About this talk

● An introduction to network congestion control
● With a demo of TCP and Queuing covering:

– Windowed protocols, TCP Reno/Cubic, Voip
and Gaming Traffic, Fair Queuing, AQMs, BBR,
and ECN...

● Using people as packets! I will need about 12
volunteers a couple slides from now for 20
minutes….

About dave...
● Co-founder (with Jim Gettys) of bufferbloat.net.

– In 1991, my dream was to have an internet where I could
plug my guitar into the wall, and play with a drummer
across town. The speed of light across SF was only 36us!
Playing on a stage, live, is 8ms! I thought it would be easy.

– I run the make-wifi-fast, cerowrt, and ecn-sane projects and
also contribute to “cake”, & embedded linux in general.

– I work in 9 layers of the ISO network stack (including the
political and financial layers in the IETF) to make a faster,
more reliable, less jittery internet more widely deployed.

– I work off of contracts (fixing wifi and cpe) and donations.

– https://www.patreon.com/dtaht

https://www.patreon.com/dtaht

https://www.patreon.com/dtaht

What is congestion control?
● Internet congestion control algorithms govern

how multiple flows from multiple sources and
destinations ultimately share the network more
or less fairly when crossing bottleneck links.

● Without congestion control, the internet would
stop working. (it already did, once)

● Many networks today teeter on the brink of
congestion collapse, degrading to near
uselessness under load due to excessive
buffering and not enough packet loss.

● https://hpbn.co/building-blocks-of-tcp/

https://hpbn.co/building-blocks-of-tcp/

About bufferbloat.net

● Gang of internet originals and 500+ volunteers on the mailing
lists who noticed that all our edge technologies – 3g, wifi, cable,
dsl - all had a fixed amount of buffering, generally configured
for the highest rate the hardware could do, NOT what users
actually had – inducing seconds of excess latency under load.

● Starting in 2011, we invented new algorithms to manage
buffering better, slammed them into linux, OSX, IOS and
freebsd, made them into IETF standards, and many have
appeared in new products!

● But we still have a billion routers and other devices to
upgrade….

 6 / 32

Bufferbloat on the
LCA 2020 WiFi network

Other Bufferbloat “solutions”
● Rather than fix the routers, the internet has

devolved...

– Most traffic is in small bursts that are
dependent on the rtt to scale up (web)

– Rate limited streaming (e.g. netflix) is on the
rise. “Buffering...” is really annoying so most
buy WAY more bandwidth than needed…
when they can

– “old” applications like scp, voip, games, are on
the decline...

● Still seems better to improve the routers...

Congestion control demos

● I’m going to do a bunch of demos now on how
the internet was designed to work...

● At each point, after I get our “packets” to
demonstrate what is actually happening, I’ll cry
out “Packets, Freeze” in order to explain each
algorithm in play.

● Feel free to overact. You are on video, however,
so don’t do anything you don’t want your mum to
see.

● Come on up!!!!

Data transfer without windows

● Setup: a short link
● A simple request response protocol (like

“xmodem”) only works on short links
● An efficient file transfer protocol has to “fill the

pipe, not the queue” when there is capacity in the
pipe between the two locations.

To fill the pipe- care about the RTT

Typical Cablemodem latencies
UNLOADED UP: 16ms DOWN: 22ms
LOADED UP: 280ms DOWN: 680ms

http://www.pollere.net/Pdfdocs/QrantJul06.pdf
http://www.pollere.net/Pdfdocs/QrantJul06.pdf

The TCP Initial Window

● An initial burst of packets MAY fill the pipe
● That burst also MAY complete the transaction
● Linux TCP has an IW of 10. Most other OSes have

an IW of 4. Although we published
IW10 Considered Harmful in 2010...

– Much web traffic is IW10 + 22 paced packets
nowadays… because that completes the
transaction for the server.

https://datatracker.ietf.org/doc/draft-gettys-iw10-considered-harmful/

TCP’s Slow Start and
Congestion Avoidance Algos

The TCP Reno/Cubic sawtooth

http://www.potaroo.net/papers/isoc/2005-06/faster.html

The role of loss and marking
● Most TCPs rely on a loss to back off by ½.
● Buffering, particularly along the edge and in wifi

and 4G can be oft measured in seconds.
● Going from 1 second to ½ second of induced

latency doesn’t help much.
● *Timely* loss or marking is essential for the

network’s correct operation.

Ack Clocking

● TCP connections rely on packet acknowledgements (acks) for reliable
transmission.

● Each ack contains cumulative data as to loss and timing. Many can be lost
and your network still work. A loss is retransmitted after it gets acks
indicating that a loss happened.

● The absence of ack (eventually) triggers a retransmit.

● Loss and marking patterns determine the size of the bursts emitted by the
sender reno/cubic TCPs.

● Acks ALSO provide a “clock”, a very unreliable one, subject to noise on either
the forward or reverse path.

● Delays in either the forward (data) or reverse (ack) direction make accurate
round trip estimation hard.

Receive and send windows

● Given bufferbloat, where packets might take a
detour around the moon, many tcp clients are
actually bound by the native send or receive
window… (how many packets can the host keep
track of) which is in the 200-400ms range, or
worse, measured by bytes rather than time.

● Many clients and algorithms exist to clamp these
to hold the RTT down.

● The scope is usually on a single tcp flow only.

Gaming, DNS, Voip Traffic types

● There exists traffic other than TCP (who knew?)
● Gaming, DNS, Voip, Videoconferencing,

request/response protocols generally

– Want the most recent, not “stale data”
– Don’t care (much) about loss
– Care a lot about jitter

● These kinds of traffic conflict with how tcp
operates, especially on bufferbloated links.

Problem: Riding the sawtooth

Solution: Fair Queuing

Problem: Keeping Queues Short

● Using shorter buffers in the first place helps a lot
– no more than one BDP.

● Modern “Active Queue Managment” AQMs (codel,
pie, fq_codel, fq_pie, sch_cake) look at how long
packets are spending in the queue, and
intelligently drop or mark packets to get the
senders to slow down to match the configured
rate.

● Typically result in a relatively fixed 5-16ms
queuing latency!!

Our Solution: fq_codel (RFC8290)

● 2012: By combining 1024 “fair” queues and the codel AQM
algorithm we got home routers minimizing latency and
maximizing throughput for all forms of internet traffic.

● Implemented in linux and freebsd and well supported by newer
devices now in the market under various trade names for QoS
and SQM.

● Automatic for line rate ethernet, dsl, and 3 wifi chipsets
● (there are other solutions appearing – fq-pie and sch_cake are

among the leading alternatives, AFD (from cisco), DOCSIS 3.1
has pie – as much as I like fq_codel, I’m cool with all these)

● The future is already here, it just isn’t evenly deployed yet.

DSL w/hw flow control,
bql, and fq_codel

Cake v Sonic Fiber @100Mbit
60ms FIFO
GPON ONT

1ms LESS latency
Under load w/cake

Tc qdisc add dev eth0 root cake bandwidth 100mbit

Quick Quiz

● How many of you are running fq_codel?
● To check,

– on Linux: “tc -s qdisc show | grep fq_”
– On Apple: netstat -I en0 -qq | less

● (that’s an “eye” not an “el” and “en0” is one
of many potential network interfaces)

Bufferbloat.net Recommendations

● Deploy AQM and Fair Queueing tech everywhere!
– https://gettys.wordpress.com/2018/02/11/the-blind-men-and-the-elephant/

● Apply SQM to your home and business routers
– Off the shelf theres dozens – evenroute, ipfire, pfsense, ubnt edgerouters, eero, asus, fritzbox, etc under

many, many trade names (but usually fq_codel derived underneath)
– You can also retrofit older routers with openwrt, dd-wrt, etc – or build your own!

● Pester your ISP to do buffering more right and according to the RFCs.
● Buy gear from vendors that have good solutions
● Deploy advanced algorithms in your datacenters (sch_fq, bbr, ecn, etc)
● And be aware of what works in the DC doesn’t work so well on DSL
● Monitor RTTs in your applications, use tools like irtt and flent to design your networks
● Grok TCP (I hope this talk helped!)
● There’s still a lot of software work to be done – only 3 linux wifi drivers so far (ax200 is in

progress), not a lot of movement in dsl, fiber, and few signs the 5G people are paying attention
● The network you save may be your own.

Bufferbloat.net recommendations

 26 / 32

The LCA 2020 WiFi network,
redux...

 27 / 32

Linux.conf.au wifi cdf plot

 28 / 32

Questions?

You could
be here.

We are
here.

Extra Slides

● Work on better bandwidth continues...

 30 / 32

Modern Developments: BBR

● Great paper: “Congestion based Congestion
Control”

● KleinRock's BBR paper is also great
● Principal observation: You cannot measure delay

and capacity at the same time.
● And: Fixing the endpoints is way easier than

replacing the routers
● BBRv2 is in heavy development at the ietf.

https://www.lk.cs.ucla.edu/data/files/Kleinrock/Internet%20congestion%20control%20using%20the%20power%20metric%20LK%20Mod%20aug%202%202018.pdf

Modern Developments: ECN

● The 2 bit ECN field in the IP header lets AQMs mark rather than
drop packets to indicate “please slow down”.

● 1.5% of web traffic is now using it.

● fq_codel – billion users - uses - RFC3168 – where a drop =
mark.

● There’s a group in the IETF that wants to change the definition
of that to make many marks per RTT mean something else.

● There’s another group proposing – “Some Congestion
Experienced” which is backward compatible to RFC3168…

● For more details about the current state of that fight , beer is
required. After the conference.

Development timeline

● 1983 – Arpanet retired

● 1984 – First internet congestion collapse observed

● 1986 – TCP reno (RFC6582) developed

● 1988 – RED developed

● 1990 – SFQ developed

● 1995 – DRR developed

● 2002 – RFC3168 (ECN) released

● 2010 - “Bufferbloat” coined & categorized

● 2012 – BQL, Codel (RFC8289),, FQ_Codel (RFC8290) & Pie (RFC8033) Developed

● 2015 – Pacing made to work

● 2016 – BBR released, “sch_cake” released

● 2017 – Wifi Fixed on a few chipsets

● 2020 – Where we stand today

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

